Global asymptotic stability of a higher order rational difference equation

نویسندگان

  • Taixiang Sun
  • Hongjian Xi
چکیده

In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient conditions under which the unique equilibrium x = 1 of this equation is globally asymptotically stable, which extends and includes corresponding results obtained in the recent literature. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Dynamics for a Higher Order Rational Difference Equation

In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...

متن کامل

Dynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$

The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...

متن کامل

The Global Attractivity of a Higher Order Rational Difference Equation

This paper studies global asymptotic stability for positive solutions to the equation yn = yn−kyn−lyn−m + yn−k + yn−l + yn−m 1 + yn−kyn−l + yn−kyn−m + yn−lyn−m , n = 0, 1, . . . , with y−m, y−m+1, . . . , y−1 ∈ (0,∞) and 1 ≤ k < l < m. The paper also includes a listing of possible semi-cycle structures for various (k, l, m). The results generalize several others in the recent literature.

متن کامل

Global stability of a rational difference equation

We consider the higher-order nonlinear difference equation xn 1 p qxn−k / 1 xn rxn−k , n 0, 1, . . . with the parameters, and the initial conditions x−k, . . . , x0 are nonnegative real numbers. We investigate the periodic character, invariant intervals, and the global asymptotic stability of all positive solutions of the above-mentioned equation. In particular, our results solve the open probl...

متن کامل

A New Algorithm for Proving Global Asymptotic Stability of Rational Difference Equations

Global asymptotic stability of rational difference equations is an area of research that has been well studied. In contrast to the many current methods for proving global asymptotic stability, we propose an algorithmic approach. The algorithm we summarize here employs the idea of contractions. Given a particular rational difference equation, defined by a function Q : R → R, we attempt to find a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007